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ABSTRACT 

Let y and y1 be probability measures on a locally convex Hausdorff real 

topological linear space E.  C.R. Baker [1] posed the problem of characterizing 

the absolute continuity of y and y, by their characteristic functionals. 

The aim of this paper is to give an answer to this problem in the case 

where y is a Gaussian Radon measure. We shall define a Fourier transform, 

establish the inversion formula, and then give a necessary and sufficient 

condition for y, to be absolutely continuous with respect to y based on the 

characteristic functional. As applications, for the convolution y «»y*v, where 

v is a Radon measure on E, we shall give some concrete sufficient conditions 

on v for y*v « y. 



§1.  INTRODUCTION AND NOTATIONS. 

Let E be a locally convex Hausdorff real topological linear space, E* 

be the topological dual space of E, <x,£> be the canonical bilinear form on 

ExE*, 8(E) be the Borel field of E, and C(E,E*) be the a-algebra generated by 

{<x,£>; £eE*}.  Every Radon measure y on (E,8(E)) is uniquely determined by the 

characteristic functional 

y(« = /Ee
1<X,e>du(x), geE*. 

Therefore a Radon measure u, is absolutely continuous with respect to u 

(denoted by Uj « u) on (E,8(E)) if and only if u. « u on (E,C(E,E*).  If u, 

and y are mutually absolutely continuous, we denote it by y.. ~ y. 

Let y be a Gaussian Radon measure on (E,8(E)). Then without loss of 

generality we may assume that the mean is zero (C. Borel1 [3]) and E is the 

minimal closed linear subspace of probability 1.  Let H be the reproducing 

kernel Hilbert space of y with norm |£| and inner product (£,n). Then H is 

separable (H. Sato and Y. Okazaki [6], C. Borell [3]), and, identifying H* 

with H, we have E* c H c E, where E* is dense in H. The characteristic functional 

~ 12 
of y is u(£) = expt-jICl ]• 

A subset A of E is called full iff Ae8(E) and y(A)=l. A random linear map 

T of E to a topological linear space (F,8(F)) is a measurable linear map defined 

on a full linear subspace of E.  Every random linear map T has an explicit value 

on H since H is included in every full linear subspace of E (H. Sato and Y. 

Okazaki [6]).  A real valued random linear map is called a random linear 

functional.  In §2 we shall show that every £eH is extended to a random linear 

functional denoted by (x,£) and that every finite dimensional orthogonal 

projection P of H is extended to a random linear map of E onto PH, which is 

again denoted by P. 



The collection of all finite dimensional orthogonal projections of H 

is denoted by P. A sequence {P } in P is called an approximation sequence 

iff x = lim P x for every xeH and P H c P  H, neN . n n    n+1 
n 

The characteristic functional of a Radon measure u, on E is called 

y-continuous iff U-, « y, and y-equivalent iff \l,  ~ P-  Let y (£) be a 

y-continuous characteristic functional.  Then there exists the Radon-Nikodym 

dux 
derivative p(x) = -=—(x), a.e.(u), and we have 

MXCCD = Ex[e
i(x'C)p(x)], CcH, 

where E [   is the mathematical expectation with respect to y in the 

variable x. Therefore our problem is reduced to characterize the image of 

L^(u) = UeL1 (y); c|)(x)>0, a.s.(u)} 

under the above transformation.  However it is more convenient for our 

purpose to define the Fourier transform F on L (y) by 

$(5) = (H)(Q   =  eT'C' Ex[e
l(x'?)c},(x)],  4eH,  ^eL^y). 

Then our problem is equivalent to characterize the image of L (y) under F. 

In §2 of this paper we prove the Riemann-Lebesgue property for a 

y-continuous characteristic functional.  In §3 we discuss the tame functionals. 

In §4, combining the idea of the "measurable function" of L. Gross [4] and 

the theory of the classical Fourier transform, we establish the inversion 

formula for F (Theorem 4), under the assumption of the integrability, give a 

necessary and sufficient condition for a continuous functional on H to be 

the Fourier image of a y-integrable functional (Theorem 5), give a necessary 

and sufficient condition for a functional on H to be a y-continuous charac- 

teristic function (Theorem 6), and then give an application to the Wiener 

measure (Theorem 7).  In §5 we discuss the convolution y. = y*v, where v 



is a Radon measure on E.  Since u is H-quasi-invariant, u*v << u if v(H)=l. 

We give some concrete sufficient conditions on v for y*v << u, including the 

case v(H)=0. 

Throughout the paper every non-negative definite functional f is assumed 

to be normalized, i.e. f(0)=l, except for Lemma 3,4, and every Radon measure 

is a probability measure.  The measure dA(t) on ]R  denotes the modified 

Lebesgue measure 

dX(t) = dX(t1,t2,. . .,td) = (2iT)"d'2dt1dt2.. .dtd< 

We also use the following notations. 

C(S)  = exp[-i|5|2],    C(Q  = exp[|U|2], 

F= real numbers, $ = complex numbers, 

R  = d-dimensional Euclidean space, 

IN = natural numbers, IN n = non-negative integers. 

The author wishes to show his hearty thanks to Prof. C.R. Baker who drew 

his attention to the problem, Prof. J. Bourgain who gave the proof of Lemma 3, 

and Prof. M. Talagrand for valuable discussions. 
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§2.  RIEMANN-LEBESGUE PROPERTY 

Let y be a Radon measure on E and x(y ) be the topology on E* 

induced by the convergence in probability y,. Then, if y << u, T(y.) is weaker 

than T(U).  On the other hand x(y) is equivalent to the topology of H. 

Therefore if y. « \i,\i,(E,)   is continuous in the topology of H so that extended 

to H.  In this paper we only consider the non-negative definite continuous 

functionals on H. 

For every ^ in H, since E* is dense in H, there exists a sequence {£ } 

in E* such that lim |£-£ | = 0.  Then, since {<x,£ >}nelN is a Caucy sequence 
n 

in x(y), <x,£ > converges to a real random variable C(x) in x(y).  Let 

{<x,£ >}ke!N be a subsequence which converges almost surely to £(x) and 
nk 

define (x,£) = lim <x,£ >.  Then (x,£) is a random linear functional on (E,y). 
k     nk 

Therefore the definition of (x,£) depends on the choice of the sequence {£  } 
nk 

but it is easy to show that (x,£) is defined uniquely up to y-null sets so 

that the distribution of (x,£) is determined uniquely. (x,£) obeys to a 

2 2 
Gaussian distribution of mean zero and variance |£|'' (denoted by N(0,|C| )), 

and (x,£) and (x,n), £>r|eH, are independent if and only if (£,n) = 0. 

For every P in P, let {e, : l<k<d} be a CONS (complete orthonormal system) 

of PH. Then obviously 

d 

$*  = I   (x>eJew 
k=l   k K 

o 
defines a random linear map of E onto PH. The definition of P depends on 

the choice of the CONS but is unique up to y-null sets so that the distri- 

bution of Px is determined uniquely.  We denote P again by P and remark 

that we have 

(x.PO   =   (Px.PS)   =   (Px,£) 

almost surely on  (E*E,  \ix\i) . 
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Let 8 (P) be the a-algebra on E generated by {(x,£); £,ePH}, and for 

every approximation sequence {P } in P, let v8(P ) be the a-algebra generated 

by U8(P ). Then for every C (E,E*)-measurable function <J> on E there exists a 

v8(P )-measurable function <j> such that 4>(x) = <j>..(x), a.s. (u). Therefore 

it is sufficient to show the absolute continuity on v8(P ) for an approximation 

sequence {P } in P. 

For every <f> in L (u) and every P in P we denote the conditional expec- 

tation with respect to 8(P) by 

(P<fO(x) = EX[*|B(P)]. 

Let {e,: l<k<d} be a CONS of PH (so that d is the dimension of PH).  Then 

there exists a Borel function (P<tO*(t) = (P<t>)*(t,,t >. . . ,t,) on R  such that 

(P(j))(x) = (P(f.)*((x,e1),(x,e2),...,(x,ed)), a.s.(u). 

THEOREM 1.     Lejt <$> be in L1 (u)  and define 

l(i)  =  Ex[el(x'?)c))(x)],       ^W. 

Then we have the following. 

(1) (j) is bounded and uniformly continuous on H. 

(2) For every approximation sequence {P } in P 

lim sup \m)   -   (PA) (5) | = 0 
n CeH " 

(3) (Riemann-Lebesque property) 

lim 4>(4) = 0. 

Proof (1) is trivial. 

(2) Let {P } be an approximation sequence in P.  Then P <t> = E [4>|8(P )] 

converges to (J) in L (u) (J. Neveu [5] Proposition IV-2-3) so that we have 
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sup |J(o - (TJ)(«I 
£eH 

= sup |Ejel(x'C)W(x) - (PJ)(x)]| 
£eH   

X 

< Ex[|4.(x) - (Pn<j>)(x)|] + 0 asn^», 

(3)  For every e>0 by (2) there exists P in P such that sup |<K£) - (P4>)(£)| < o^. 

On the other hand we have 

|(PJ)K)| - |Ex[e
i(x'^(P<t,)(x)]| 

= |Ex[e
i(x'C)(P(j))*((x,e1),(x,e2),...,(x,ed))]| 

= C(CI-P)C) J(C), 

ijt (S,ek) 
J = J(0 = / de 

k      (Pt|))*(t1,t2,...,td) C(t1,t2,...,td)dX(t1,...,td), 
K 

where I is the identity operator of H, {e. : l<k<d} is a CONS of PH. Then we 

can easily prove that lim C((I-P)?)J(C) = 0 by the classical Riemann-Lebesgue 
|g|4« 

theorem and the boundedness of C(£,) and J(£). 

From now on we denote the integral J(£) symbolically by 

JCO = /el(Px,P^(P<j>)(Px)C(Px)dA(Px). 
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§3.  TAME FUNCTIONALS 

A u-measurable functional $ = 4>(x) on E is called a tame functional if 

there exists P in P such that <J>(x) = 4>(Px), a-s- (M), and a functional 

\\> - ty(E,)  on H is called a tame functional if there exists P in P such that 

4>(£) = 4>(P£) f°r every £cH.  It is obvious that every continuous tame functional 

on H is extended to a u-measurable tame functional on E. 

The following lemma is proved in S. Bochner and K. Chandrasekharan [2], 

Theorem 37, 38. 

LEMMA 1.  Define the classical Fourier transform by 

f(a) = / el(a't:)f(t)dA(t),  ae!Rd, 
IT 

for f e L (K ,dX). Then we have 

(1) f(t) = lim / e"l(t,a:)f(a)C(/EcOdA(a), a.s.(dA). 

e+0 IT 

(2) In particular if f(a) .is dA(a)-integrable, then 

f(t) = /  e"l(t,a}f(a)dX(a), a.s.(dX). 
F 

On the other hand we have the following lemma. 

LEMMA 2.  Let <j> be a u-integrable tame functional on E such that <f)(x) = 4>(Px), 

A A A 
a.s.(u), for a P in P.  Then <{> = F<j> has the representation $(£) = $(PC) for 

all £ in H, and extends to a tame functional on E. 

Proof. Assume that <f> satisfies the hypothesis.  Then we have 

J(PO = C(P5)Ex[e
l(x'PC:)<Kx)] 

= C(POEx[e
i(x'P?)(KPx)] 

= C(C)Ex(e
l(x'°<})(Px)] 

= C(5)Ex[e
l(x'5)4»(x)] = $(£), £€H. 

Q.E.D. 
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For a y-integrable function ty we define 

(TiMS) = C(C)Ex[e
_l(x'^iJ;Cx)], geh. 

If ip is a tame functional, Tty  is also a tame functional on H and can be 

extended to a tame functional on E. 

THEOREM 2.  Let ij; be a continuous tame functional on H which is y-integrable 

on E. Then ty  is the Fourier transform of a y-integrable tame functional on 

E if and only if <f> = Fijj is y-integrable. 

Moreover if such <}> is_ y-integrable, we have ip = Fcf». 

Proof. Assume that UK)   = \|;(P£), £eH, for a P in P and <j> = Tty  is y-integrable. 

Then we have 

<|>(x) = <J>(Px) 

- C(Px)E^[e"i(^Px)^(^)] 

= C(Px)E£[e"
l(P^Px)^(P^)] 

so that 

C(Px)<KPx) = E [e"l(Px'P^^(PC)] 

= Je"
lCPx'P?^(PC)C(PC)dX(PC). 

This shows that C(Px)4>(Px) is the classical Fourier inverse transform of 

CCPOMPC).  If 4>W = 4>(Px) is y-integrable, then C(Px)<|>(Px) is dX(Px)-integrablc 

and we have by Lemma 1(2) 

i|»(P5)C(P5) = /el(Px'P?)C(Px)<HPx)dA(Px), a.s.(dA), 

so that 

HZ)   = UK)  = C(P^)Ex[e
i(Px'PC)(})(Px)] 

= C(5)Ev[e
i(x'^<D(Px)] 

= C(^)Ex[e
l(x'C)c!)Cx)] = (F«(0,  a.s.(y) 

The necessity is a simple corollary of Lemma 1. 

Q.E.D. 
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We estimate the Fourier transform of some typical tame functionals. 

EXAMPLE 1. 

<Kx)       i(.Z) 

(1) e0^'^, ek2|n|2+aiC5'n),    aeC,  neH, 

(2) ei(x'n), e'^,T\)-T\T)\2}      neH 

(3) (x,n)n, inhn((C,n)),      neH,  lnl-1, neN0, 

(4) hn((x,n)),    in(£,n)n, neH,  lnl-1. ne»0, 

2 2 
B. — 

where h  (s)   =   (-1)   e      e       ,    ne]Nn . 
ds 

The proof of the following lemma was given by a personal communication 

from J. Bourgain. 

LEMMA 3. 

Let v be a finite measure on IT which is singular to dA.  Then we have 

_d 

lira (e) 2 /  c(^)dv(s) = 0, a.s. (dA(t)). 
e-*0 Ka    /e 

Proof. Without loss of generality we may assume that v is a probability 

measure.  Since v is singular to dA, there exists a Borel subset N of K 

such that A(N) = 0 and v(N) = 1. 

For every e>0 define 

_d 

f (t) • (e) 2 / dC(^)dv(s) 

d 

- (e) 2 /NC(^)dv(s), te]R
d, 

and for every 6>0 

A = A(6) = {teRd;  lim sup f (t) > 6}. 
e-*0     £ 
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Then for every t in A there exists a sequence of positive numbers 

e = e. (t) ^ 0 and f (t) > 6 for all kelN . 
k 

Fix any t in A and any e>0, and define 

B. = {self1; 2ke < |s-t|2 < 2(k+l)e}, kelN . 
* 0 

Then we have 

/^(t) = I  /B CC^-)dv(s) > v^6 
k \    S£ 

so that 

6/^ < I  e"kv(B ). 
k     K 

Let £=£(e) be the minimal number in N  greater than 1-log 6 - •=• log e 

e-1 
- log —=—. Then we have 

-I 
v -k   e   „ 6 r- d 
I  e  =  IT s J^    ' 

k££    1-e 

so that 

6/6* < I  e"kv(B ) 
k     k 

< I  e v(B.) + Z e 
k<£ k>£ 

< I e"kv(B ) • § v^, 
k<£     K   l 

and 

I e-kv(Bk) , f J?. 
k^ k 

CO  

Define L = /e/(/e-1) = £ e  and M = S/e  /2L. Then there exists 
k=0 

kfe") 
k(e) < I  = &(e) such that v(B, , .) > Me  *• '.  In fact assume the contrary. 

2 
Then for every k<& we have v(B, ) < Me so that 
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k 

I  e"kv(B ) < I  e 2M 
k<£ k<£ 

„ , 6/^  6 r-d 
< L   = j  /£ , 

2L   * 

which is a contradiction. 

Define for every k>0 

DR  =  {self1;   |s-t|2  <  2(k+l)e}. 

Then we have A(D,) = y/(k+l)e , where y  is a positive constant independent of 

t, e and k, so that 

He) 
w<W*vCBk(e)>*e :  2E 

2  ^/E4. 

Since k 
2       - 

6 = inf %f /e(k+l)2 > 0, 
k>0 ZL ' 

we have 

v(Dk(£)) > BY/(k+l)e
d = 3X(Dk(£)). 

d e-1 
On the other hand, we have k(e) < £(e) = 2 - log 6 - y log e - log ~— 

so that 

X(Dk(e)) = Y/(k(e)+l)e^ 

<.  y/(ii(e) + l)e •* 0 as e •* 0. 

Thus we have proved that for every t in A and every r>0 there exists a 

closed ball D with center t and radius less than r such that v(D) 5 3A(D). 

Assume that b = A(A) > 0.  Then there exists a compact subset K of N 

such that v(K) > 1 - | b and we have A(K) < A(N) = 0.  Define A' = A\K.  Then 

we can choose a sequence {D } of closed balls such that 

UD 3 A1 , D n K = 0, D, n D„ = 0(K*£) ,  k,£elN . 
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Then we have 

v(A') = V(N n ^ = v(UDn) 

> 6A(UDn) = 6{A(^Dn) + X(K)} 

> BX(A) > Bb. 

On the other hand, by the assumption we have v(K) > 1 - •=• Bb so that 

V(A) = V(A') + V(K) 

> Bb + 1 - -j Bb 

= 1 + j 6b > 1. 

This is a contradiction. 

Thus we have proved that A(A(6)) = 0 for every 6>0, which implies 

A(teIR : lim sup f (t) > 0) = 0. 

Q.E.D. 

As an application of Lemma 3 we have the following lemma. 

LEMMA 4. 

Let f = f(a) be a complex valued function on ]R . Then there exists a 

non-negative A-integrable function p on IR  such that 

f(c0 = / de
l(t'a:)p(t)dA(t), ael^ 

IT 

if and only if f is non-negative definite continuous and 

f(0) = / ,dX(t) lim / e"l(t'a-f(a)C(/ea)dA(a). 
R     e+0 if 

Proof. The necessity is evident from Lemma 1. We shall prove the sufficiency. 

Assume that f satisfies the hypothesis.  Then by the Bochner's theorem 

there exists a finite measure m on R such that 

f(a) = / el(a,t)dm(t)J ae!Rd. 
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Let dm(t) = p(t)dX(t) + dv(t) be the Lebesgue decomposition of m where v 

is singular to dX. Then we have 

f(cO - /ei(a't;)p(t)dX(t) + /el(a't;)dv(t) = fx(a) + f2(a) 

and by Leraraa 1 

p(t) = lim /el(t'a)f1(a)C(/E'a)dA(a), a.s. (dX(t)). 
e-K) 

On the other hand by Lemma 3, since v is singular to A, we have 

lim / el(t'a)f»(a)C(/ea)dA(a> 
e+o  r 

= lim / ,/e"dC(^)dv(s) = 0, a.s. dX(t). 
e  Rd    /e 

Therefore we have 

p(t) = lim /el(t,a)f(a)C(/£a)dX(a), a.s. dX(t). 

Furthermore we have 

v(!Rd) + / ,p(t)dX(t) = m(Ed) = f(0) = / p(t)dX(t) 

so that v = 0. Q.E.D. 

Now we can give a characterization of a u-continuous characteristic 

functional in the case of tame functionals. 

For a u-measurable functional ip on E and P in P define 

(Fp^)(x) = lim C(Px)E [e"l(Px'PC)iKPaC(/e~P£)] 
e+0      ^ 

if it has a meaning.  In particular if 4>(P£) is u-integrable, then we have 

(FpijO(x) • C(Px)E?[e"
l(Px'P?^(P^)]. 

THEOREM 3.  Let lj; be a tame functional on H such that iK£) = >KP£) for a P in P, 

Then f(£) = C(£)iK5) is a y-continuous characteristic functional if and only 

if f (C) is non-negative definite continuous on H (so that T \\>  is well-defined) 

and we have E [ (F ty)(x) ] = 1. 
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And then (Fpt^)(x) is the Radon-Nikodym derivative. 

Proof. Assume that \p  satisfies the hypothesis.  Then we have 

(Fpi|;Hx) = Hm C(Px)E [e"l(Px'P?^(PC)C(/FP?)] 

=  lira C(Px) /e"l(Px'P?)iJj(P5)C(PC)C(/ePC)dX(PO 
e 

= lira C(Px) /e'l(Px'P^f(P5)C(i/ePS)dX(P£). 
£ 

Since f(P£) satisfies the hypothesis of Lemma 4 we have 

f(PO = /el(Px'P^(Fp^)(x)C(Px)dX(Px) 

B Ex[e
iCPx'P^(Fp^)(x)]. 

On the other hand by the definition we have (Fp<J0 (x) = (F i>) (Px) , a.s. (u), 

so that 

f(C) = C((I-P)C)£(PC) 

= C((I-P)?)Ex[e
i(Px'P^(Fp^)(Px)] 

= Fx[e
i(x'^(FpU;)(x)]. 

The necessity is also proved in the same manner. 

Q.E.D. 



- 16 - 

§4.  GENERAL INVERSION FORMULA 

THEOREM 4 (Inversion formula).  Let $ be a u-integrable function on E. 

Then for an arbitrary approximation sequence {P } in P we have 

Fp $ = ExU,|S(Pn)] , nclN. 

— ~ 1 Therefore Fp <j> converges to <b simultaneously in L (u) and almost surely. 
n 

Proof.  By the definition we have 

(Fp $)(x) 
n 

-i(P x,P £) 
=  lim C(Pnx)E [e   n  n <j>(P 5)C(/eP £)] 

-i(P x,P £)_ i(X,PnO 
=  limC(Px)E    [e C(P £)E    [e n    $(y)]C(^eP £)] 

e-K) ^ n        / n 

-i(P x,P g)_ i(P y,P £) 
= lim C(Pnx)^[e n    C(PnQEy[e n    iy[<p|3(Pn)] JC^P^)] 

-i(P x,P C) i(P y,P £) 
= lim C(Pnx) /e      

n CC/?Pn^)dX(PnC) /e     
n (PJ) (Pny)C(Pny)dX(Pny) 

= (P <J>)(P x) 

= Ex[<|)|B(Pn)], a.e. 

by Lemma 1. Q.E.D. 

THEOREM 5.  Let \\>  be a continuous functional on H such that ii(P Q,  neW , 

are u-integrable for an approximation sequence {P } in^ P. Then there exists 

a_ y-integrable function <j> such that I/J = Fc}> if and only if Fp ty, neN , 

1  ~ n 

are u-mtegrable and converge to (J> i£ L (y). 

Proof.  Assume \p  satisfies the hypothesis so that Fp \p    converges to a 

• 1 n n 

u-integrable function <P in L (U) .  Then we have for every £ in H 
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(F<|»)(0   = C(C)Ex[e
l(x^)(j)(x)] 

=  lim C(^)Ex[e
l(x'5)(Fp iJO(x)] 

n n 

= lim FFp ip. 
n n 

Since   (Fp 4J) (X)   =   (Fp ip) (P x),  a.s.    (u) ,  by Theorem 2 we have 
n n 

H?nO  = FFp ^ ^ i>{Q  as n •* »,  £eH. 
n 

The necessity was proved in Theorem 4. 

Q.E.D. 

Before stating Lemma 5, we remark that by the continuous injection of 

E into (E*) , the algebraic dual of E* with the weak topology o((E*)a,E*), 

u is extended to a Gaussian Radon measure u on (E*) . On the other hand, 

every non-negative definite continuous functional f on H uniquely defines a 

probability measure vf on ((E*) ,C((E*) ,E*)) such that f is the characteristic 

function of v,-.  Then it is easy to show that f is a u-continuous charac- 

f 

LEMMA 5.  Let f be a non-negative definite continuous functional on H, 

teristic functional on H if and only if vf «  y on ((E*)a,C((E*)a,E*)). 

vf be the corresponding probability measure on ((E*) ,C((E*) ,E*)) and {P } 

be an arbitrary approximation sequence in P.  Then if vf is singular to u~ 

on C((E*) ,E*), then (Tp \p)(x) converges to zero almost surely (u), so that 
n 

almost surely (u) , where <K£) = C(^)f (?) , £eH. 

Proof.  Since E is a u-measurable full set in (E*) , random linear maps on E 

are naturally extended to (E*) .  Denote the a-algebra on (E*)  generated by 

{(x,^); £eP H} by ^n» vB by 8^, the restriction of v, to F by v , and the 

restriction of p to 8 by y , respectively.  Then for every C((E*)a,E*)-mea- 

surable function <J> on (E*)  there exists a 8^-measurable function <J>. such 

that 4>=<t>,   a.s. (u). 
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Let 

VA) = ^APn(x)d^n(x) + VA)'  AeV  1:Sn*+00> 

be the Lebesque decomposition of v with respect to y so that 0 is singular 

to y . Since {B } is increasing, by J. Neveu [5] Proposition III-2-7 {p } 

is a non-negative supermartingale so that P converges almost surely (y) to 

p^.  On the other hand vf is singular to y so we have p =0,  a.s. (y). 

On the other hand we have 

i(x,Pn?)    _       i(x,P£) _ 
f(PnU - /e      pn(x)dyn(x) + /e      dG^x) 

- fi(PnO • f2(Pn«.        5eH, 

so that by the proof of Lemma 4 we have 

Fp ^i = pnO), 
a-s-(yn). 

n 

Fp ip2 = 0, a.s. (pn), 
n 

where we define \L»-. = Cf. and (];„ = Cf .  Therefore we have 

lim Tp ty =  lim Fp ip + lim Fp ij; 
n   n    n   n     n   n 

= lim Pn(x) =0, a.s. (y). 
n 

Q.E.D. 

THEOREM 6.  Let f be a functional on H.  Then f is a y-continuous charac- 

teristic functional if and only if f is non-negative definite continuous on 

H and for a (so that any) approximation sequence P  in P 

<|> (x) = Fp (Cf)(x) 
n 

converges in L (y) to <j) such that E [<f>(x)] = 1. 

And then <|> is the Radon-Nikodym derivative. 
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Proof. Assume that f is a y-continuous characteristic functional with the 

Radon-Nikodym derivative p.  Then we have Cf = Fp so that by Theorem 4 

Fp (Cf) = E [p|B(P )] 
n 

which converges to p in L (u) as n-*». 

Conversely assume that f satisfies the hypothesis of the theorem. Then 

there exists a probability measure v. on ((E*)a,C((E*)a,E*)) with the 

characteristic functional f.  Let dvf(x) • p(x)dy(x) + d6~(x) be the Lebesque 

decomposition of Vr with respect to u, the extension of u to (E*) .  Then 

we have 

f(£) = /el(:x,?)p(x)dil(x) + /el(x'?)d6(x) 

= fjK) + f2(5),       CeH. 

By Theorem 4 Fp (Cf,) converges to p in L QT).  On the other hand, since 
n 

0 is singular to u, by Lemma 5 either Fp (Cf_) converges to zero in L (M) or 
n 

does not converge in L (y).  By hypothesis F (Cf) = F (Cf-) + F (Cf ) 
n       n        n 

1 t — —    a converges in L (\T)   so that converges to p and we have Jp(x)du(x) = 1 = vf((E*) ) 

Therefore 9=0 and the theorem is proved. Q.E.D. 

Reformulating Theorem 6, we have the following proposition. 

PROPOSITION 1.  Let f be the characteristic functional of a Radon measure u. 

on E.  Then u. << u if and only if f is continuous on H and for a (so that any) 

approximation sequence {P } in P 
n 

-d(n) 
<{>n(x) = lim e  v VE

exP 
e-K) 

-T-|P x-P y|2 + lip x|
2 

?E
ZI

   n        n7 '   21 n ' 2L 
du1(y), neN 

where d(n) is the dimension of P H, converges in L (u) to_ <}> such that 

Ex[*(x)] = 1. 

And then <J> is the Radon-Nikodym derivative. 
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Proof.  Since we have 

f(C) = Jge^'^dy^X), UH, 

Fubini's theorem implies that 

Tp  (Cf)(x) 

-i(Pnx,Pne)-f  |P^|2_ 
= lkC(Px)L[e       n C(P £)f(P £)] 

e+0 * 

e2,       ,2 
-i(P x,P 0-y|P S| iCy.P 5) 

=limC(Px)   Je        n      n n      dA(P E)   Je n    du.(y) 
e-K) 

= lim £-
d(n) / expt-^-lP x-P y|2 + l| P x| 2]dy (y). 

e-K)      c   2e 

Then Theorem 6 proves the proposition. Q.E.D. 

Let A ={e ,,e „,...,e  ,, ,}, neK , be a sequence of ONS in H.  Then 
n    n,l n,2'    n,d(n) M 

{A } is called an approximation sequence of ONS ijn E* iff we have A c E*, 

A c A -, neIN and the closed linear span of UA coincides with H.  Let {A } 

be an approximation sequence of ONS in E*. Then for every n the projection 

dfn) 
P x = } <x,e , >e , 
n   . L,    n,k n,k k=l 

is well-defined for all xeE and it is easy to show that {P } is an 

approximation sequence in P. A slight modification of Proposition 1 gives 

the following proposition. 

PROPOSITION 2.  Le_t u, be a Radon measure on E.  Then u. « U if and only if 

there exists an approximation sequence of ONS in E* say A = {e ,,e „,...,e  ,, .}, 
 — -     —   —- n    n,l' n,2'    n,d(n) ' 

neM , such that 

r\r  -\ i     d(n) _ 
<j>  (x)   =  lim e_cUnJ   Lexp[—^    >     {(1-e )<x,e    ,>Z 

£+0 E 2e2 k-1 n'k 

" 2<x'en.k><3r'an,k> + <y'en,k>2]dyl(y) 
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converges in L (u) to <j) such that E [<f>(x)] = 1. 

And then <j> is the Radon-Nikodym derivative. 

Proof.  Let P be the orthogonal projection of H onto the linear span of 

A , ne IN . Then {P } is an approximation sequence in P and we have 

1  In      D   I2    lln   I2 

 T 
p x - P y  + -x- P x 

0 2' n    ny '   2 ' n ' 2e 
d(n) 

2e2 k=l 

"(n)     2       2 2 
£  {(1-e )<x,eri > - 2<x,e^ ,><y,e^ .> + <y,e^ ,>^} , 

which is well-defined for all x,y in E since A c E*. ne IN .  Therefore, without >j n 

using the continuity of \i,{E,)  on H, from the hypothesis we can construct the 

Radon-Nikodym derivative and the sufficiency is proved. 

The necessity is proved as a simple corollary of Proposition 1. 

Q.E.D. 

We apply Proposition 2 to the Wiener measure. 

Let B(t), 0<t<l, be the standard Brownian motion, X(t) be an arbitrary 

continuous process on [0,1] vanishing at zero.  Then B(t) and X(t) induce 

the Wiener measure u and a Radon measure \i,   on the real separable Banach 

space C[0,1], the space of all continuous functions vanishing at zero, 

respectively. The topological dual space of C[0,1] is u(0,l], the space of 

all signed measures on (0,1]. 

Let 

V  : 0 = t n < t    ,<...< t  w,=l n     n,0   n,l        n,d(n) 

be a decomposition of [0,1] such that V    .   is a refinement of V  , nelN .  Let 

<5(t) be the Dirac measure concentrated on t [0,1], 

en,k = IVkl'^Vk) - 6^n,k-l)}' lstelCn). neW, 

where |A , I = t , - t , n, and assume that lim max |A ,1=0.  Then it is 1 n,k'   n,k   n,k-l' ,  ' n,k' 
II    K 
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not difficult to show that A = {e .,e „,..., e  ,, ,}, neM , is an 
n    n,l' n,2     n,d(n)      ' 

approximation sequence of ONS in u(0,l].  As a corollary of Proposition 2 

we have the following theorem. 

THEOREM 7.  Let B(t), 0<t<l, be the standard Brownian motion, X(t), 0<t<l, 

be an arbitrary continuous process vanishing at zero, u be the Wiener measure 

induced by B(t) and u, be the Radon measure induced by X(t) oil C[0,1]. Then 

u « u if and only if 

d> = lim e •d(n)^c 
dfn) 

K    l    Tr-rUl-e2)B(An)k)
2 - 2B(Anjk)X(An)k) + X(An>k)

2}) 
2e2 k=l n,k 

p 
converges in L (u) to <J> such that E [<}>] = 1 , where B(A . ) = B(t ,) -B(t , .), n, K      n, K      n»K~ x 

X(A  ) =  X(t ,) - X(t   .), l<k<d(n), nclN , and E X[ ] and E B[ ] are the 
rijK     n jK     n j K — ± 

expectations with respect to X(t) and B(t), respectively. 

And then <j> is the Radon-Nikodym derivative. 
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§5.  CONVOLUTION. 

Let v be a Radon measure on E and u*v be the convolution of u and v. 

Then the characteristic functional is given by u*v(£) = u(£)v(£) = C(£)v(£), 

£eE*, where v is the characteristic functional of v.  If u*v << u, then v(£) 

is continuous on H. The aim of this paragraph is to give some sufficient 

conditions on v for u*v « u. 

LEMMA 6. 

(1) If v=6 , the Dirac measure concentrated on xeE, then u*6 << u if and 

only if xeH. 

(2) If v(H) = l, then y*v « \i. 

(3) Assume that u*v << JJ and let En be a full linear subspace of E. Then 

we have v(E„) = 1. 

Proof.  (1) is well-known. 

(2) Assume that v(H) = 1 and u(N) = 0.  Then by (1) u(N-x) = (u*6 )(N) = 0 

for all xeH so that we have 

(u*v)(N) = /Ey(N-x)dv(x) 

= /Hp(N-x)dv(x) = 0. 

(3) Assume that u*v << u and let E„ be a full linear subspace.  Then we have 

1 = (u*v)(EQ) = /EM(E0-x)dv(x), 

so that v(XeE: u(E -x) = 1) = 1.  Since E„ is a linear subspace, we have 

(En-x) n E_ = 0 if x^E„. Therefore we have {xeE; u(En-x) = 1} c E„ and 

V(EQ) > v(xeE: u(EQ-x) = 1) = 1. Q.E.D. 

By Lemma 6 our interest is reduced to the case where v(H) = 0. 

Since v is bounded, Theorem 5 is applicable and we have the following 

proposition as a corollary. 
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PROPOSITION 3.  Let v be a Radon measure on E.  Then we have y*v « u 

if and only if v(£) is continuous on H and there exists an approximation 

sequence {P } i_n P such that 

<t>n(x) = /Ee dv(y), 

converges in L (u)• 

And then the limit function is the Radon-Nikodym derivative. 

Proof.  Let P  be an approximation sequence in P. Then, since {P } is 

bounded so that integrable for every n€lN, we have 

<J> W = l> v(x) 
n 

C(Pnx)^ 
-i(p X,P K)       i(P y,P £) 

e Le        dv(y) 

(Pnx,Pny)-i|Pny|
2 

= JEe dv(y), 

which is y-integrable for C(C)v(C) is non-negative definite. Therefore Theorem 

5 proves the theorem. 
Q.E.D. 

As in Proposition 2 we can modify Theorem 7 as follows.  The proof is 

similar to that of Proposition 2. 

PROPOSITION 4.  Let v be a Radon measure on E.  Then we have u*v « u if and 

only if there exists an approximation sequence of ONS i_n E*, say 

A ={e .,e  _,...,e  ,, ,}, neW , such that 
n    n,l n,2     n,d(n)         

4>n(x) = /£exp 
rdfn) 

•k=l 

1      2 
<x,e ,><y,e .> - -^<y,e ,> n,k '  n,k   2 '  n,k 

dv(y) 

converges in L (u). 

And then the limit function is the Radon-Nikodym derivative. 
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Proposition 4 gives the following theorem in a similar manner to the 

proof of Theorem 7. We use the same notations with Theorem 7. 

THEOREM 8.  Let B(t), 0<t<l, be the standard Brownian motion, X(t), 0<t<l, 

be an arbitrary continuous process vanishing at 0 and independent of {B(t)}, 

u be the Wiener measure induced by B(t) and v be the Radon measure induced 

by X(t) on C[0,1]. Then B(t) + X(t), 0<t<l, induces u*v and we have 

u*v << u if and only if there exists a sequence of decomposition of [0,1] 

V  :     0 = t _ < t 1<...<t ,<...<t  ,, . = 1 
n      n,0   n,l        n,k        n,d(n) 

.-;uch that V    . is a refinement of V ,  neIN, lim max IA ,1=0 and     n+1     n' . n,k   n      k 

•n-E
X 

converges in L  (u) 

6XP Cr I^TT {B(An,k)X(An,k) " T^n.k^ 
*    K — ±        rijK 

The following theorems are also applications of Proposition 4. 

THEOREM 9.  Let v be a Radon measure on E and assume that there exists a 

CONS {ek} of H chosen from E* such that 

n 
SUP /ExE

exP ( I <y.ek><y
,,ek>)dv(y)dv(y') < +°°. 

n k=l 

Then p*v << u. 

Proof.  Obviously A = {e.,e?,...,e }, neIN, is an approximation sequence of 

ONS in E* so that Proposition 4 is applicable and we have 

n 12 
<t>nM = /Eexp ( I  <x,ek><y,ek> - 2<y.ek> )dv(y). 

k=l 

On the other hand, since {<x,e,>} is a standard Gaussian sequence so 

that <J> is a 8(P )-martingale where P is the orthogonal projection of H to 

th e linear span of {e,,e2,...,e } 
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Then 

sup E r<j> (xr] 
n 

xl  n 

n 

= SU
P /ExE

exp (1 <y'eK><y,'ek>)dv^)dv^') < +0° 
n k=l 

implies the uniform integrability of {<j> } and <J> converges in L (u) 

Q.E.D. 

Before stating Theorem 10 we prove the following lemmas. 

LEMMA 7.  Let {X, } be an independent real random sequence on (E,u) such that 

the expectation E [X, (x)] = 0, 1 + X, > 0, a.s., keN , and Z = lim n (1+X,) > 0, 
n k=l 

a.s..  Then Z = II (1+X.) converges to Z in L (u) 
n        K 

I 

Proof.  Define Y = (1+X )% kelN. Then we have E [Y,] < 1 and 
K        K X  K 

oo n 

n E [Y ] = lim n E [Y ] 
k=l x K   n k=l 

lim E 
n 

- n 
HY 

Lk=l 
lim E [Z2] 

xL nJ 
n 

,2l    _ ,2- >  E [lim inf Z*] = IE [Z^l > 0. 
xL       nJ    xl J 

n 

Therefore we have for every n,m e N (n<m) 

Z  -Z   |]2 
n    m1 

r   X       ±     -L       -L 
|Z2  -  Z2||Z2  +  Z2| 1   n        m1 '   n        m1 

< 4E     |z2 - z2r n        m1 

8E •   Z2Z2 
-L JL 
2Z2 

n m 

8{i - EX[   n   Yk]} 
n<k<m 

8{1  -    n     E^[Yk]} •* 0    as n,m •* 
n<k<m 

Q.E.D. 
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LEMMA 8.  Let {x, } be a real sequence such that x, > -1, keN .  If 

2 n 

Ex, and Ex, converge, then Z = n (1+x, ) converges to a positive number. 
R K    k K n k=1   k 

Proof.  Since Ex, converges, we have lim x, = 0 so that we may assume |x, I < 1; 
k 

keN .  By the Taylor expansion we have 

00 r   i->n+1 

[log d^-2   i if-   4. 
k k    n=l 

For every N,M  (N<M)   e   IN   we have 

1   i ^ «M     : 
N<k<M n>2      " 

n 
r.        1      r        n 2> < 

L       |X. I 
n>2 n N<k<M 

I    \{    I    \)2 * 0 as N,M -> +oo 
n>2        N<k<M 

2 
since Ex < +°°.  Therefore 

kn 

r   i-vn+l 
I log (i.xk, - R . I   fc!l M 
k k   n>2      k 

converges. Q.E.D. 

THEOREM 10. Let v be a Radon measure on E and assume that there exists a CONS 

{e, } of H chosen from E* such that {<y,e, >} is an independent symmetric random 

sequence on (E,v), and 

00 1     o 

M = I    IT" I  /F<y,ek>
2V2<y'ek> dv(y) < +°°. 

n=2 2nn! k b   K 

Then we have u*v ~ \i. 

Proof. Assume that the hypothesis is satisfied.  Since {<y,e,>} are indepen- 

dent, we have 

n 12 
<f>n(x)   = /E    n exp   [<x,ek><y,ek> - ^y.e^ ]dv(y) 

k=l 

n 12 
= n /    exp  [<x,ek><y,ek> -  2<y,eR> ]dv(y), neN. 
k=l 
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Define 
1 <y 

\ = U exp [<x»ek><y>ek> " 2<y'ek> ]dv(y) _ l>  keM 

Then {X, } is an independent random sequence on (E,u) such that E [X, (x)] = 0 

and 1+X, > 0, a.s. (u), kelN.  Therefore if we prove that 

°° n 
II (1+X.) > 0, a.s. (u), then by Lemma 7 <J> =11 (1+X.) converges in L (u) .  By 

k=l   K n k=l   k 

2 
Lemma 8 it is enough to prove the convergences of EX, and EX, . 

k K    k K 

In fact we have by the symmetricity of {<y,e, >} 

00     i -i'<yJe]>
2 

Xk =  /E    *    nT^V^'V"6 dv^   ~  1 
n=0 

co _0<v  e  > 
V 1      ,        ^2nf ,        ,2n    2 y,ek     ,   ,  , =JQ T2nTT <X'V    /E

<y'V    e dv(y) 

1       1 2n    ""2"<>r'ek>2 

• UB in- TH 
<y-V   e dv(y) 

n=0 2 

i        2      ,        2 ~2<y'ek 
= i{<x,ek>Z  -  1}/E<y,ek>z e K    dv(y) 

2n i 2 oo     <Y   p  > -"V<v   e   > 
v ;  

X,ek 1    ,   , „        ,2n      2  y,ek     ,   ,  , 
+j2

{-(2nyr " XT} ^-V   e dv(y) 

= vk + V 

Since {<x,e,>} is a standard Gaussian sequence on (E,u) and by Schwarz' 

inequality we have 
1       .2 

_<y,e.> e       dv(y) 
k E " k 

4  -^y»e
k

>2 

- ^ <'E<y,ek> e       dv(y) < 2M < +o°, 
k 

2 
E V. and E V, converge almost surely. 
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On the other hand we have 
1 2 

k kn>2vy 2n! 

i   . ?n   -^
<y»ew>2 

• 2 I    —i- /E<y.ek>zn e K    dv(y)  < 2M < +». 
ns2 2 n! 

2 
Therefore EW, converges absolutely a.s. (y) so that EW, converges almost surely, 

These imply that EX = EV + EW, and EX? = EV 2 + 2EV.W, + EW 2 converge 
kk  k k  kk   kK  kk   kkK  kk 

almost surely (u). Q.E.D. 

EXAMPLE 2.  Let E • R  , the space of all real sequences, y is the product 

measure of copies of N(0,1).  Then we have H = £?.  Let v be the product 

2 
measure of N(0,^v7),  v,  > 0,   kelN .     Then y*v ~ u if Evk <  +°°. 

K 

Remark that v(&2)   = 0 if Ev.   = +°°. 

In fact let {e,} be the canonical CONS of l~.    Then we have for every 

k,n e   IN 

00 i r>«     -T<y,e,>2 

1 IT" HE<y,eR>2n e k    dv(y) 
n=2 2nn!   k    b        k 

2<y,e,>2 . 7    -T<y,e,>2 « i l      vk 
-I      {e k      -1       l<y,e>2}e k dv(y)   -  ££l   -      **--*    } 
k=l 2 k k=l "^    2 /UvT3 

2 
-        Vk 2/1+y     •  1 

= I  t      3 "—= 2 - K <  +C°- 
k=l 2/I+v^"5  C^f+vT +1)        k 

COROLLARY.  Let v be a Radon measure on E and assume that there exists a CONS 

{e, } of H chosen from E* such that {<y,e, >} is an independent symmetric 

random sequence on (E,v) and 

1 4 J- 
/ exp  [j Q<y,e > )2]dv(y)  < +«. 

1    k        k 

Then y*v ~ y. 
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Proof.    We have 

<<y,ek>l 

I V- I /^-V2" e"<y,6k> dv(y) * X HT/ I n>2 2n!  k=l K n>2 n*      k 

4 - 

«I    ~T !\l  T—   dv(y)  < / exp[±-Q<y,e >4)T]dv(y)  < +-. 

dV(y) 

EXAMPLE 3.  Let y be the same as in Example 2 and v II -=- f6  +6  ) where 
2 *• a    -a •* 

n    n    n 

La < +°°. Then y*v ~ y. n 
n 

v(£2) = 1 if and only if Za < +°°. 
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